miRNA Processing: Dicer-1 Meets Its Match
نویسنده
چکیده
July 2005 | Volume 3 | Issue 7 | e259 | e244 Cell membranes are largely made of proteins, and membrane proteins account for about a third of all genes. Despite their importance, they are devilishly hard to isolate and stabilize, and therefore are hard to study. The problem lies in their structure: membrane proteins have at least one hydrophobic domain, composed of a stretch of waterrepelling amino acids, which holds the protein snugly in the lipid membrane. Purifying such a protein in an aqueous medium makes the hydrophobic parts aggregate, destroying the protein’s delicate three-dimensional structure and often disrupting its function. The alternative is to extract the protein with a detergent, a two-headed “Janus” molecule with both hydrophobic and hydrophilic ends. The protein remains surrounded by the hydrophobic ends, while water clusters at the hydrophilic ends, easing the protein out of the membrane and into solution, where it can be studied. To date, though, relatively few complex membrane proteins have been successfully purifi ed with available detergents. In this issue, Shuguang Zhang and colleagues show that a simple amino acid–based detergent can successfully stabilize the dauntingly large protein complex photosystem I (PS-I), an integral part of the photosynthetic machinery. The molecule they made, abbreviated A 6 K, links six units of the hydrophobic amino acid alanine to one of the hydrophilic amino acid lysine. The authors used it to stabilize PS-I and then attached the detergent–protein complex to a glass slide, allowed it to dry, and examined the stability of PS-I by testing its fl uorescence. Intact PS-I emits red light with a characteristic peak wavelength; as it degrades, this peak subsides and is replaced by another, bluer peak. Even the two best standard detergents did poorly at maintaining the red peak. In contrast, the spectrum after A 6 K extraction was almost a perfect match for the normal one, indicating the complex was largely intact after drying. Furthermore, the complex appeared to remain stable for up to three weeks on the glass slide. The potential applications of this work are severalfold. PS-I itself remains to be fully characterized, and this stabilization technique offers new means to explore its properties. In addition, an isolated and stabilized form of PS-I may hold some promise as an alternative energy source, since it generates an electric current in sunlight. Perhaps most importantly, the full potential of such simple amino acid–based detergents has only begun to be explored. It is likely that either this one, or others like it, can be used to isolate and stabilize hundreds of other membrane proteins, allowing them to be studied in detail for the fi rst time.
منابع مشابه
Distinct Roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA Silencing Pathways
The RNase III enzyme Dicer processes RNA into siRNAs and miRNAs, which direct a RNA-induced silencing complex (RISC) to cleave mRNA or block its translation (RNAi). We have characterized mutations in the Drosophila dicer-1 and dicer-2 genes. Mutation in dicer-1 blocks processing of miRNA precursors, whereas dicer-2 mutants are defective for processing siRNA precursors. It has been recently foun...
متن کاملProcessing of Pre-microRNAs by the Dicer-1–Loquacious Complex in Drosophila Cells
microRNAs (miRNAs) are a large family of 21- to 22-nucleotide non-coding RNAs that interact with target mRNAs at specific sites to induce cleavage of the message or inhibit translation. miRNAs are excised in a stepwise process from primary miRNA (pri-miRNA) transcripts. The Drosha-Pasha/DGCR8 complex in the nucleus cleaves pri-miRNAs to release hairpin-shaped precursor miRNAs (pre-miRNAs). Thes...
متن کاملInorganic phosphate blocks binding of pre-miRNA to Dicer-2 via its PAZ domain.
In Drosophila, Dicer-1 produces microRNAs (miRNAs) from pre-miRNAs, whereas Dicer-2 generates small interfering RNAs from long double-stranded RNA (dsRNA), a process that requires ATP hydrolysis. We previously showed that inorganic phosphate inhibits Dicer-2 cleavage of pre-miRNAs, but not long dsRNAs. Here, we report that phosphate-dependent substrate discrimination by Dicer-2 reflects dsRNA s...
متن کاملDissecting the interactions of SERRATE with RNA and DICER-LIKE 1 in Arabidopsis microRNA precursor processing
Efficient and precise microRNA (miRNA) biogenesis in Arabidopsis is mediated by the RNaseIII-family enzyme DICER-LIKE 1 (DCL1), double-stranded RNA-binding protein HYPONASTIC LEAVES 1 and the zinc-finger (ZnF) domain-containing protein SERRATE (SE). In the present study, we examined primary miRNA precursor (pri-miRNA) processing by highly purified recombinant DCL1 and SE proteins and found that...
متن کاملA New Short Oligonucleotide-Based Strategy for the Precursor-Specific Regulation of microRNA Processing by Dicer
The precise regulation of microRNA (miRNA) biogenesis seems to be critically important for the proper functioning of all eukaryotic organisms. Even small changes in the levels of specific miRNAs can initiate pathological processes, including carcinogenesis. Accordingly, there is a great need to develop effective methods for the regulation of miRNA biogenesis and activity. In this study, we focu...
متن کاملRNA-binding protein AUF1 represses Dicer expression
MicroRNA (miRNA) biogenesis is tightly regulated by numerous proteins. Among them, Dicer is required for the processing of the precursor (pre-)miRNAs into the mature miRNA. Despite its critical function, the mechanisms that regulate Dicer expression are not well understood. Here we report that the RNA-binding protein (RBP) AUF1 (AU-binding factor 1) associates with the endogenous DICER1 mRNA an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Biology
دوره 3 شماره
صفحات -
تاریخ انتشار 2005